
Artificial neural network (ANN) 

 

Artificial neural network (ANN) model involves computations and 

mathematics, which simulate the human–brain processes. Many of the 

recently achieved advancements are related to the artificial intelligence 

research area such as image and voice recognition, robotics, and using 

ANNs. The ANN models have the specific architecture format, which is 

inspired by a biological nervous system. Like the structure of the human 

brain, the ANN models consist of neurons in a complex and nonlinear form. 

What we will learn in this section: 
• The Neuron 
• The Activation Function 
• How do Neural Networks work? (example) 
• How do Neural Networks learn? 
• Gradient Descent 
• Stochastic Gradient Descent 
• Backpropagation 

The Neuron 

Neurons (also called neurones or nerve cells) are the fundamental units of 

the brain and nervous system, the cells responsible for receiving sensory 

input from the external world, for sending motor commands to our muscles, 

and for transforming and relaying the electrical signals at every step in 

between. A neuron has three main parts: dendrites, an axon, and a cell 

body or soma. A dendrite (tree branch) is where a neuron receives input 

from other cells. The axon (tree roots) is the output structure of the neuron; 

when a neuron wants to talk to another neuron, it sends an electrical 

message called an action potential throughout the entire axon. The soma 

(tree trunk) is where the nucleus lies, where the neuron’s DNA is housed, 

and where proteins are made to be transported throughout the axon and 

dendrites.  

Artificial neurons are software modules, called nodes, and artificial neural 

networks are software programs or algorithms that, at their core, use 

computing systems to solve mathematical calculations. 

https://qbi.uq.edu.au/brain/brain-anatomy/axons-cable-transmission-neurons
https://qbi.uq.edu.au/brain-basics/brain/brain-physiology/action-potentials-and-synapses


 

 

 

 

 

Input Layer Neuron:Neuron which yellow color; 

Hidden Layer Neuron: Neuron which green color; 

Red Layer Neuron: Neuron which red color; 

The Neuron 

 



 

 

Output value may be continuous like price / Binary as Yes or No / 

Categorical that time may beseveral output values because your dummy 

variable which will be represent your category. Above just like simple linear 

regression or multivalue linear regression. It is a single observation. 

 

 

 

Here is synopsis. All are getting weight. Weights are very crucial to Artificial 

Neuron Network functioning because how Neural Network learn by 

adjusting the weights. Neural Network decide what signal is important or 

what not important neuron signal or what signal pass along or what does 

not pass along. Weights are crucial that their thing to processing learning. 

Training on ANN basic train of adjusting the weights in all the synopsis 



across the in all neuron network. Where gradient descent or 

backpropagation come to play.  

Signal goes into the neuron what happen inside the neuron. Few things 

happen- 1stthing: all to the value gets to added up. Its takes added 

weighted sum of all of the input values. 

 

2nd Step: Then applied the activation function that neuron understand if the 

pass the signal or not.Basically decide the pass the signal to next neuron or 

decide the step-3. 

 

3rd Step: That is repeated throughout whole neuron network thousands of 

neurons.  

 

 



 

 

 

  



 

Activation Functions 

An activation function in a neural network is a mathematical function 

applied to the output of a neuron. Its primary purpose is to introduce non-

linearity into the model, allowing the network to learn and represent 

complex patterns in the data. Without non-linearity, a neural network would 

essentially behave like a linear regression model, regardless of the number 

of layers it has. 

 

 

 

 

 

 

 

 

 

https://www.geeksforgeeks.org/activation-functions-neural-networks/
https://www.geeksforgeeks.org/activation-functions-neural-networks/
https://www.geeksforgeeks.org/activation-functions-neural-networks/


 

 

 

Here are some common activation functions: 

1. Sigmoid Function: This function maps any input to a value between 

0 and 1. It’s often used in the output layer of binary classification 

problems. 

 

 

 

 

 

2. Tanh Function: Similar to the sigmoid function but maps inputs to 

values between -1 and 1. It is often used in hidden 

layers.The hyperbolic tangent activation function (tanh) is 

commonly used in artificial neural networks for hidden layers. It 

https://www.bing.com/ck/a?!&&p=8120c01559a60e52JmltdHM9MTcyMjgxNjAwMCZpZ3VpZD0wYmM3Njc3ZS1lM2IxLTYxYzItMWRmMC03MzUxZTIwMTYwNzImaW5zaWQ9NTgwOA&ptn=3&ver=2&hsh=3&fclid=0bc7677e-e3b1-61c2-1df0-7351e2016072&psq=hyperbolic+tangent+ACTIVATION+FUNCTION&u=a1aHR0cHM6Ly93d3cuZWR1Y2F0aXZlLmlvL2Fuc3dlcnMvd2hhdC1pcy10aGUtdGFuaC1hY3RpdmF0aW9uLWZ1bmN0aW9u&ntb=1
https://www.bing.com/ck/a?!&&p=8120c01559a60e52JmltdHM9MTcyMjgxNjAwMCZpZ3VpZD0wYmM3Njc3ZS1lM2IxLTYxYzItMWRmMC03MzUxZTIwMTYwNzImaW5zaWQ9NTgwOA&ptn=3&ver=2&hsh=3&fclid=0bc7677e-e3b1-61c2-1df0-7351e2016072&psq=hyperbolic+tangent+ACTIVATION+FUNCTION&u=a1aHR0cHM6Ly93d3cuZWR1Y2F0aXZlLmlvL2Fuc3dlcnMvd2hhdC1pcy10aGUtdGFuaC1hY3RpdmF0aW9uLWZ1bmN0aW9u&ntb=1


transforms input values to produce output values between -1 and 

1. The tanh function has an S-shape similar to the sigmoid activation 

function, but its output range is -1 to 1. It is useful for normalizing the 

output of a neuron and improving network performance. 

 

 

 

 

3. ReLU (Rectified Linear Unit): This function outputs the input directly 

if it is positive; otherwise, it outputs zero. It’s widely used in hidden 

layers of neural networks. 

https://www.bing.com/ck/a?!&&p=8120c01559a60e52JmltdHM9MTcyMjgxNjAwMCZpZ3VpZD0wYmM3Njc3ZS1lM2IxLTYxYzItMWRmMC03MzUxZTIwMTYwNzImaW5zaWQ9NTgwOA&ptn=3&ver=2&hsh=3&fclid=0bc7677e-e3b1-61c2-1df0-7351e2016072&psq=hyperbolic+tangent+ACTIVATION+FUNCTION&u=a1aHR0cHM6Ly93d3cuZWR1Y2F0aXZlLmlvL2Fuc3dlcnMvd2hhdC1pcy10aGUtdGFuaC1hY3RpdmF0aW9uLWZ1bmN0aW9u&ntb=1
https://www.bing.com/ck/a?!&&p=8120c01559a60e52JmltdHM9MTcyMjgxNjAwMCZpZ3VpZD0wYmM3Njc3ZS1lM2IxLTYxYzItMWRmMC03MzUxZTIwMTYwNzImaW5zaWQ9NTgwOA&ptn=3&ver=2&hsh=3&fclid=0bc7677e-e3b1-61c2-1df0-7351e2016072&psq=hyperbolic+tangent+ACTIVATION+FUNCTION&u=a1aHR0cHM6Ly93d3cuZWR1Y2F0aXZlLmlvL2Fuc3dlcnMvd2hhdC1pcy10aGUtdGFuaC1hY3RpdmF0aW9uLWZ1bmN0aW9u&ntb=1
https://www.bing.com/ck/a?!&&p=2a7fbf698a83ac08JmltdHM9MTcyMjgxNjAwMCZpZ3VpZD0wYmM3Njc3ZS1lM2IxLTYxYzItMWRmMC03MzUxZTIwMTYwNzImaW5zaWQ9NTgxMg&ptn=3&ver=2&hsh=3&fclid=0bc7677e-e3b1-61c2-1df0-7351e2016072&psq=hyperbolic+tangent+ACTIVATION+FUNCTION&u=a1aHR0cHM6Ly9tYWNoaW5lbGVhcm5pbmdtYXN0ZXJ5LmNvbS9jaG9vc2UtYW4tYWN0aXZhdGlvbi1mdW5jdGlvbi1mb3ItZGVlcC1sZWFybmluZy8&ntb=1
https://www.bing.com/ck/a?!&&p=2a7fbf698a83ac08JmltdHM9MTcyMjgxNjAwMCZpZ3VpZD0wYmM3Njc3ZS1lM2IxLTYxYzItMWRmMC03MzUxZTIwMTYwNzImaW5zaWQ9NTgxMg&ptn=3&ver=2&hsh=3&fclid=0bc7677e-e3b1-61c2-1df0-7351e2016072&psq=hyperbolic+tangent+ACTIVATION+FUNCTION&u=a1aHR0cHM6Ly9tYWNoaW5lbGVhcm5pbmdtYXN0ZXJ5LmNvbS9jaG9vc2UtYW4tYWN0aXZhdGlvbi1mdW5jdGlvbi1mb3ItZGVlcC1sZWFybmluZy8&ntb=1
https://www.bing.com/ck/a?!&&p=430637ef0b9e3b01JmltdHM9MTcyMjgxNjAwMCZpZ3VpZD0wYmM3Njc3ZS1lM2IxLTYxYzItMWRmMC03MzUxZTIwMTYwNzImaW5zaWQ9NTgxNA&ptn=3&ver=2&hsh=3&fclid=0bc7677e-e3b1-61c2-1df0-7351e2016072&psq=hyperbolic+tangent+ACTIVATION+FUNCTION&u=a1aHR0cHM6Ly9tZWRpdW0uY29tL2NvZGV4L2FjdGl2YXRpb24tZnVuY3Rpb25zLWluLW5ldXJhbC1uZXR3b3JrLXN0ZXBzLWFuZC1pbXBsZW1lbnRhdGlvbi1kZjJlNGM4NThjMjE&ntb=1
https://www.bing.com/ck/a?!&&p=430637ef0b9e3b01JmltdHM9MTcyMjgxNjAwMCZpZ3VpZD0wYmM3Njc3ZS1lM2IxLTYxYzItMWRmMC03MzUxZTIwMTYwNzImaW5zaWQ9NTgxNA&ptn=3&ver=2&hsh=3&fclid=0bc7677e-e3b1-61c2-1df0-7351e2016072&psq=hyperbolic+tangent+ACTIVATION+FUNCTION&u=a1aHR0cHM6Ly9tZWRpdW0uY29tL2NvZGV4L2FjdGl2YXRpb24tZnVuY3Rpb25zLWluLW5ldXJhbC1uZXR3b3JrLXN0ZXBzLWFuZC1pbXBsZW1lbnRhdGlvbi1kZjJlNGM4NThjMjE&ntb=1


 

 

ReLU(𝑥) = max(0, 𝑥) 

4. Leaky ReLU: A variant of ReLU that allows a small, non-zero 

gradient when the unit is not active. 

 

where ( \alpha ) is a small constant. 

5. Softmax Function: Used in the output layer of neural networks 

for multi-class classification problems. It converts logits into 

probabilities. 

The softmax function is a mathematical operation that converts a 

vector of K real numbers into a probability distribution of K possible 

outcomes. Here’s how it works: 

A. Given an input vector z of K real numbers, the softmax function 

computes the exponential of each element in z. 



B. It then normalizes these exponentials by dividing each value by 

the sum of all exponentials. 

The result is a probability distribution consisting of K probabilities, 

where each probability corresponds to one of the possible outcomes. 

Mathematically, the softmax function is defined as follows: 

 

Here: 

 (z_i) represents the i-th element of the input vector z. 

 The denominator sums up the exponentials of all elements in z. 

The softmax function is commonly used in machine learning, 

especially in neural networks, for tasks like classification. It ensures 

that the output values are non-negative and sum up to 1, making them 

interpretable as probabilities. 

 

 

Each activation function has its own advantages and is chosen based 

on the specific requirements of the neural. 

https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function


 

 

 

  



How do neural networks work? 

One way to understand how ANNs work is to examine how neural networks work in the 
human brain. The history of ANNs comes from biological inspiration and extensive study 
on how the brain works to process information. 

Artificial neural network structure 

An individual neuron is a cell with an input and output structure. The input structure of a 
neuron is formed by dendrites, which receive signals from other nerve cells. The output 
structure is an axon that branches out from the cell body, connecting to the dendrites of 
another neuron via a synapse. Neurons communicate using electrochemical signals. 
Neurons only fire an output signal if the input signal meets a certain threshold in a 
specified amount of time. 

ANNs operate similarly. They receive input signals that reach a threshold using sigmoid 
functions, process the information, and then generate an output signal. Like human 
neurons, ANNs receive multiple inputs, add them up, and then process the sum with a 
sigmoid function. If the sum fed into the sigmoid function produces a value that works, 
that value becomes the output of the ANN. 

This is the structure of an individual neuron in an ANN, but networks have multiple layers 
and neurons that create the network. The structure of an entire artificial neural network 
consists of: 

 Input layer: takes in the input data and transfers it to the second (hidden) layer of 
neurons using synapses. An input layer has as many nodes as features or columns of 
data in the matrix. 

 Hidden layer: takes data from the input layer to categorize or detect desired aspects of 

the data. Nodes in the hidden layer send the data to more hidden layers or, finally, to the 
output layer. The hidden layer of an ANN is a “black box” because researchers cannot 
determine its results. 

 Output layer: takes data from the hidden layer and outputs the results. It has as many 

nodes as the model desires. 
 Synapses: connect nodes in layers and in between layers. 

Deep neural networks, which are used in deep learning, have a similar structure to a 
basic neural network, except they use multiple hidden layers and require significantly 
more time and data to train.  

 

Types of neural networks 

Neural networks vary in type based on how they process information and how many 
hidden layers they contain. Three types of neural networks include the following: 
 Feed-forward neural networks 



 Backpropagation neural networks 
 Convolution neural networks 

Let’s take a closer look at how each neural network type works.  

 
Convolution Neural Network 

A Convolutional Neural Network (CNN) is a type of Deep Learning neural network 

architecture commonly used in Computer Vision. Computer vision is a field of Artificial 
Intelligence that enables a computer to understand and interpret the image or visual 
data.  
When it comes to Machine Learning, Artificial Neural Networks perform really well. 
Neural Networks are used in various datasets like images, audio, and text. Different 
types of Neural Networks are used for different purposes, for example for predicting 
the sequence of words we use Recurrent Neural Networks more precisely 
an LSTM, similarly for image classification we use Convolution Neural networks. 
 
Convolution Neural Network 

Convolutional Neural Network (CNN) is the extended version of artificial neural 
networks (ANN) which is predominantly used to extract the feature from the grid-like 
matrix dataset. For example visual datasets like images or videos where data patterns 
play an extensive role. 
CNN architecture 
Convolutional Neural Network consists of multiple layers like the input layer, 
Convolutional layer, Pooling layer, and fully connected layers.  

 

 

 
 

 

  

https://www.geeksforgeeks.org/implementing-ann-training-process-in-python/
https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/
https://www.geeksforgeeks.org/understanding-of-lstm-networks/
https://www.geeksforgeeks.org/artificial-neural-networks-and-its-applications/
https://www.geeksforgeeks.org/artificial-neural-networks-and-its-applications/


How Convolutional Layers works 
Convolution Neural Networks or covnets are neural networks that share 
their parameters. Imagine you have an image. It can be represented as a 
cuboid having its length, width (dimension of the image), and height (i.e 
the channel as images generally have red, green, and blue channels).  

 

Now imagine taking a small patch of this image and running a small 
neural network, called a filter or kernel on it, with say, K outputs and 
representing them vertically. Now slide that neural network across the 
whole image, as a result, we will get another image with different widths, 
heights, and depths. Instead of just R, G, and B channels now we have 
more channels but lesser width and height. This operation is 
called Convolution. If the patch size is the same as that of the image it 

will be a regular neural network. Because of this small patch, we have 
fewer weights.  

 
Image source: Deep Learning Udacity 

Now let’s talk about a bit of mathematics that is involved in the whole 
convolution process.  
 Convolution layers consist of a set of learnable filters (or kernels) 

having small widths and heights and the same depth as that of input 
volume (3 if the input layer is image input). 

 For example, if we have to run convolution on an image with 
dimensions 34x34x3. The possible size of filters can be axax3, where 



‘a’ can be anything like 3, 5, or 7 but smaller as compared to the 
image dimension. 

 During the forward pass, we slide each filter across the whole input 
volume step by step where each step is called stride (which can have 
a value of 2, 3, or even 4 for high-dimensional images) and compute 
the dot product between the kernel weights and patch from input 
volume. 

 As we slide our filters we’ll get a 2-D output for each filter and we’ll 
stack them together as a result, we’ll get output volume having a 
depth equal to the number of filters. The network will learn all the 
filters. 

Layers used to build ConvNets 
A complete Convolution Neural Networks architecture is also known as 
covnets. A covnets is a sequence of layers, and every layer transforms 
one volume to another through a differentiable function.  
Types of layers: datasets 
Let’s take an example by running a covnets on of image of dimension 32 
x 32 x 3.  
 Input Layers: It’s the layer in which we give input to our model. In 

CNN, Generally, the input will be an image or a sequence of images. 
This layer holds the raw input of the image with width 32, height 32, 
and depth 3. 

 Convolutional Layers: This is the layer, which is used to extract the 
feature from the input dataset. It applies a set of learnable filters 
known as the kernels to the input images. The filters/kernels are 
smaller matrices usually 2×2, 3×3, or 5×5 shape. it slides over the 
input image data and computes the dot product between kernel 
weight and the corresponding input image patch. The output of this 
layer is referred as feature maps. Suppose we use a total of 12 filters 
for this layer we’ll get an output volume of dimension 32 x 32 x 12. 

 Activation Layer: By adding an activation function to the output of 
the preceding layer, activation layers add nonlinearity to the network. 
it will apply an element-wise activation function to the output of the 
convolution layer. Some common activation functions are RELU: 
max(0, x),  Tanh, Leaky RELU, etc. The volume remains unchanged 
hence output volume will have dimensions 32 x 32 x 12. 

 Pooling layer: This layer is periodically inserted in the covnets and its 
main function is to reduce the size of volume which makes the 
computation fast reduces memory and also prevents overfitting. Two 
common types of pooling layers are max pooling and average 
pooling. If we use a max pool with 2 x 2 filters and stride 2, the 
resultant volume will be of dimension 16x16x12.  

https://www.geeksforgeeks.org/ml-introduction-to-strided-convolutions/
https://www.geeksforgeeks.org/activation-functions-neural-networks/
https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/


 
Image source: cs231n.stanford.edu 

 Flattening: The resulting feature maps are flattened into a one-
dimensional vector after the convolution and pooling layers so they 
can be passed into a completely linked layer for categorization or 
regression. 

 Fully Connected Layers: It takes the input from the previous layer 

and computes the final classification or regression task. 

 
Image source: cs231n.stanford.edu 



 Output Layer: The output from the fully connected layers is then fed 
into a logistic function for classification tasks like sigmoid or softmax 
which converts the output of each class into the probability score of 
each class. 

 

  



Gradient Descent 

What Is Gradient Descent in Machine Learning? 

Gradient Descent is an optimization algorithm for finding a local minimum 
of a differentiable function. Gradient descent in machine learning is simply 
used to find the values of a function's parameters (coefficients) that 
minimize a cost function as far as possible. 

 

Gradient descent is an optimization algorithm that’s used when training a 
machine learning model. It’s based on a convex function and tweaks its 
parameters iteratively to minimize a given function to its local minimum. 

You start by defining the initial parameter’s values and from there the 
gradient descent algorithm uses calculus to iteratively adjust the values so 
they minimize the given cost-function. 

 

What Is a Gradient? 

A gradient simply measures the change in all weights with regard to the 
change in error. You can also think of a gradient as the slope of a function. 

The higher the gradient, the steeper the slope and the faster a model can 
learn. But if the slope is zero, the model stops learning. In mathematical 
terms, a gradient is a partial derivative with respect to its inputs. 

Imagine a blindfolded man who wants to climb to the top of a hill with the 
fewest steps possible. He might start climbing the hill by taking really big 
steps in the steepest direction. But as he comes closer to the top, his steps 
will get smaller and smaller to avoid overshooting it. Imagine the image 
below illustrates our hill from a top-down view and the red arrows are the 
steps of our climber. A gradient in this context is a vector that contains the 
direction of the steepest step the blindfolded man can take and how long 
that step should be. 

https://builtin.com/data-science/tour-top-10-algorithms-machine-learning-newbies
https://builtin.com/machine-learning/machine-learning-models-explained
https://builtin.com/machine-learning/machine-learning-models-explained
https://builtin.com/data-science/vector-norms


 

 

Note that the gradient ranging from X0 to X1 is much longer than the one 

reaching from X3 to X4. This is because the steepness/slope of the hill, 

which determines the length of the vector, is less. This perfectly represents 

the example of the hill because the hill is getting less steep the higher it’s 

climbed, so a reduced gradient goes along with a reduced slope and a 

reduced step size for the hill climber. 

How Does Gradient Descent Work? 

Instead of climbing up a hill, think of gradient descent as hiking down to the 
bottom of a valley. The equation below describes what the gradient descent 
algorithm does: b is the next position of our climber, while a represents his 
current position. The minus sign refers to the minimization part of the 
gradient descent algorithm. The gamma in the middle is a waiting factor 



and the gradient term ( Δf(a) ) is simply the direction of the steepest 
descent. 

 

 

This formula basically tells us the next position we need to go, which is the 
direction of the steepest descent. Let’s look at another example to really 
drive the concept home.  

Imagine you have a machine learning problem and want to train your 
algorithm with gradient descent to minimize your cost-function J(w, b) and 
reach its local minimum by tweaking its parameters (w and b). The image 
below shows the horizontal axes representing the parameters (w and b), 
while the cost function J(w, b) is represented on the vertical axes. 

 

 

https://builtin.com/machine-learning/machine-learning-basics
https://builtin.com/machine-learning/cost-function


We want to find the values of w and b that correspond to the minimum of 

the cost function (marked with the red arrow). To start, we 

initialize w and b with some random numbers. Gradient descent then starts 

at that point (somewhere around the top of our illustration), and it takes one 

step after another in the steepest downside direction (i.e., from the top to 

the bottom of the illustration) until it reaches the point where the cost 

function is as small as possible. 

 

Types of Gradient Descent:  

 Batch Gradient Descent 
 Stochastic Gradient Descent 
 Mini-Batch Gradient Descent 

  

https://builtin.com/data-science/regression-machine-learning
https://builtin.com/data-science/regression-machine-learning


Gradient Descent Learning Rate 

How big the steps gradient descent takes in the direction of the local 
minimum is determined by the learning rate, which figures out how fast or 
slow we will move towards the optimal weights. 

For the gradient descent algorithm to reach the local minimum, we must set 
the learning rate to an appropriate value, which is neither too low nor too 
high. This is important because if the steps it takes are too big, it may not 
reach the local minimum because it bounces back and forth between the 
convex function of gradient descent (see left image below). If we set the 
learning rate to a very small value, gradient descent will eventually reach 
the local minimum but that may take a while (see the right image). 

 

The learning rate should never be too high or too low for this reason. You 
can check if your learning rate is doing well by plotting it on a graph. 

 

How to Solve Gradient Descent Challenges  

To make sure the gradient descent algorithm runs properly, plot the cost 
function as the optimization runs. Put the number of iterations on the x-axis 
and the value of the cost function on the y-axis. This helps you see the 
value of your cost function after each iteration of gradient descent, and 
provides a way to easily spot how appropriate your learning rate is. Try 
different values for it and plot them all together. The left image below 



shows such a plot, while the image on the right illustrates the difference 
between good and bad learning rates. 

 

 

If the gradient descent algorithm is working properly, the cost function 
should decrease after every iteration. 

When gradient descent can’t decrease the cost function anymore and 
remains more or less on the same level, it has converged. The number of 
iterations gradient descent needs to converge can sometimes vary a lot. It 
can take 50 iterations, 60,000 or maybe even 3 million, making the number 
of iterations to convergence hard to estimate in advance. 

There are some algorithms that can automatically tell you if gradient 
descent has converged, but you must define a threshold for the 
convergence beforehand, which is also pretty hard to estimate. For this 
reason, simple plots are the preferred convergence test. 

Another advantage of monitoring gradient descent via plots is it allows us to 
easily spot if it doesn’t work properly, for example if the cost function is 
increasing. Most of the time the reason for an increasing cost-function 
when using gradient descent is a learning rate that’s too high.  

If the plot shows the learning curve going up and down without really 
reaching a lower point, try decreasing the learning rate. Also, when starting 
out with gradient descent on a given problem, simply try 0.001, 0.003, 0.01, 
0.03, 0.1, 0.3, 1, etc., as the learning rates and look at which one performs 
the best. 
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