
Artificial neural network (ANN)

Artificial neural network (ANN) model involves computations and

mathematics, which simulate the human–brain processes. Many of the

recently achieved advancements are related to the artificial intelligence

research area such as image and voice recognition, robotics, and using

ANNs. The ANN models have the specific architecture format, which is

inspired by a biological nervous system. Like the structure of the human

brain, the ANN models consist of neurons in a complex and nonlinear form.

What we will learn in this section:
• The Neuron
• The Activation Function
• How do Neural Networks work? (example)
• How do Neural Networks learn?
• Gradient Descent
• Stochastic Gradient Descent
• Backpropagation

The Neuron

Neurons (also called neurones or nerve cells) are the fundamental units of

the brain and nervous system, the cells responsible for receiving sensory

input from the external world, for sending motor commands to our muscles,

and for transforming and relaying the electrical signals at every step in

between. A neuron has three main parts: dendrites, an axon, and a cell

body or soma. A dendrite (tree branch) is where a neuron receives input

from other cells. The axon (tree roots) is the output structure of the neuron;

when a neuron wants to talk to another neuron, it sends an electrical

message called an action potential throughout the entire axon. The soma

(tree trunk) is where the nucleus lies, where the neuron’s DNA is housed,

and where proteins are made to be transported throughout the axon and

dendrites.

Artificial neurons are software modules, called nodes, and artificial neural

networks are software programs or algorithms that, at their core, use

computing systems to solve mathematical calculations.

https://qbi.uq.edu.au/brain/brain-anatomy/axons-cable-transmission-neurons
https://qbi.uq.edu.au/brain-basics/brain/brain-physiology/action-potentials-and-synapses

Input Layer Neuron:Neuron which yellow color;

Hidden Layer Neuron: Neuron which green color;

Red Layer Neuron: Neuron which red color;

The Neuron

Output value may be continuous like price / Binary as Yes or No /

Categorical that time may beseveral output values because your dummy

variable which will be represent your category. Above just like simple linear

regression or multivalue linear regression. It is a single observation.

Here is synopsis. All are getting weight. Weights are very crucial to Artificial

Neuron Network functioning because how Neural Network learn by

adjusting the weights. Neural Network decide what signal is important or

what not important neuron signal or what signal pass along or what does

not pass along. Weights are crucial that their thing to processing learning.

Training on ANN basic train of adjusting the weights in all the synopsis

across the in all neuron network. Where gradient descent or

backpropagation come to play.

Signal goes into the neuron what happen inside the neuron. Few things

happen- 1stthing: all to the value gets to added up. Its takes added

weighted sum of all of the input values.

2nd Step: Then applied the activation function that neuron understand if the

pass the signal or not.Basically decide the pass the signal to next neuron or

decide the step-3.

3rd Step: That is repeated throughout whole neuron network thousands of

neurons.

Activation Functions

An activation function in a neural network is a mathematical function

applied to the output of a neuron. Its primary purpose is to introduce non-

linearity into the model, allowing the network to learn and represent

complex patterns in the data. Without non-linearity, a neural network would

essentially behave like a linear regression model, regardless of the number

of layers it has.

https://www.geeksforgeeks.org/activation-functions-neural-networks/
https://www.geeksforgeeks.org/activation-functions-neural-networks/
https://www.geeksforgeeks.org/activation-functions-neural-networks/

Here are some common activation functions:

1. Sigmoid Function: This function maps any input to a value between

0 and 1. It’s often used in the output layer of binary classification

problems.

2. Tanh Function: Similar to the sigmoid function but maps inputs to

values between -1 and 1. It is often used in hidden

layers.The hyperbolic tangent activation function (tanh) is

commonly used in artificial neural networks for hidden layers. It

https://www.bing.com/ck/a?!&&p=8120c01559a60e52JmltdHM9MTcyMjgxNjAwMCZpZ3VpZD0wYmM3Njc3ZS1lM2IxLTYxYzItMWRmMC03MzUxZTIwMTYwNzImaW5zaWQ9NTgwOA&ptn=3&ver=2&hsh=3&fclid=0bc7677e-e3b1-61c2-1df0-7351e2016072&psq=hyperbolic+tangent+ACTIVATION+FUNCTION&u=a1aHR0cHM6Ly93d3cuZWR1Y2F0aXZlLmlvL2Fuc3dlcnMvd2hhdC1pcy10aGUtdGFuaC1hY3RpdmF0aW9uLWZ1bmN0aW9u&ntb=1
https://www.bing.com/ck/a?!&&p=8120c01559a60e52JmltdHM9MTcyMjgxNjAwMCZpZ3VpZD0wYmM3Njc3ZS1lM2IxLTYxYzItMWRmMC03MzUxZTIwMTYwNzImaW5zaWQ9NTgwOA&ptn=3&ver=2&hsh=3&fclid=0bc7677e-e3b1-61c2-1df0-7351e2016072&psq=hyperbolic+tangent+ACTIVATION+FUNCTION&u=a1aHR0cHM6Ly93d3cuZWR1Y2F0aXZlLmlvL2Fuc3dlcnMvd2hhdC1pcy10aGUtdGFuaC1hY3RpdmF0aW9uLWZ1bmN0aW9u&ntb=1

transforms input values to produce output values between -1 and

1. The tanh function has an S-shape similar to the sigmoid activation

function, but its output range is -1 to 1. It is useful for normalizing the

output of a neuron and improving network performance.

3. ReLU (Rectified Linear Unit): This function outputs the input directly

if it is positive; otherwise, it outputs zero. It’s widely used in hidden

layers of neural networks.

https://www.bing.com/ck/a?!&&p=8120c01559a60e52JmltdHM9MTcyMjgxNjAwMCZpZ3VpZD0wYmM3Njc3ZS1lM2IxLTYxYzItMWRmMC03MzUxZTIwMTYwNzImaW5zaWQ9NTgwOA&ptn=3&ver=2&hsh=3&fclid=0bc7677e-e3b1-61c2-1df0-7351e2016072&psq=hyperbolic+tangent+ACTIVATION+FUNCTION&u=a1aHR0cHM6Ly93d3cuZWR1Y2F0aXZlLmlvL2Fuc3dlcnMvd2hhdC1pcy10aGUtdGFuaC1hY3RpdmF0aW9uLWZ1bmN0aW9u&ntb=1
https://www.bing.com/ck/a?!&&p=8120c01559a60e52JmltdHM9MTcyMjgxNjAwMCZpZ3VpZD0wYmM3Njc3ZS1lM2IxLTYxYzItMWRmMC03MzUxZTIwMTYwNzImaW5zaWQ9NTgwOA&ptn=3&ver=2&hsh=3&fclid=0bc7677e-e3b1-61c2-1df0-7351e2016072&psq=hyperbolic+tangent+ACTIVATION+FUNCTION&u=a1aHR0cHM6Ly93d3cuZWR1Y2F0aXZlLmlvL2Fuc3dlcnMvd2hhdC1pcy10aGUtdGFuaC1hY3RpdmF0aW9uLWZ1bmN0aW9u&ntb=1
https://www.bing.com/ck/a?!&&p=2a7fbf698a83ac08JmltdHM9MTcyMjgxNjAwMCZpZ3VpZD0wYmM3Njc3ZS1lM2IxLTYxYzItMWRmMC03MzUxZTIwMTYwNzImaW5zaWQ9NTgxMg&ptn=3&ver=2&hsh=3&fclid=0bc7677e-e3b1-61c2-1df0-7351e2016072&psq=hyperbolic+tangent+ACTIVATION+FUNCTION&u=a1aHR0cHM6Ly9tYWNoaW5lbGVhcm5pbmdtYXN0ZXJ5LmNvbS9jaG9vc2UtYW4tYWN0aXZhdGlvbi1mdW5jdGlvbi1mb3ItZGVlcC1sZWFybmluZy8&ntb=1
https://www.bing.com/ck/a?!&&p=2a7fbf698a83ac08JmltdHM9MTcyMjgxNjAwMCZpZ3VpZD0wYmM3Njc3ZS1lM2IxLTYxYzItMWRmMC03MzUxZTIwMTYwNzImaW5zaWQ9NTgxMg&ptn=3&ver=2&hsh=3&fclid=0bc7677e-e3b1-61c2-1df0-7351e2016072&psq=hyperbolic+tangent+ACTIVATION+FUNCTION&u=a1aHR0cHM6Ly9tYWNoaW5lbGVhcm5pbmdtYXN0ZXJ5LmNvbS9jaG9vc2UtYW4tYWN0aXZhdGlvbi1mdW5jdGlvbi1mb3ItZGVlcC1sZWFybmluZy8&ntb=1
https://www.bing.com/ck/a?!&&p=430637ef0b9e3b01JmltdHM9MTcyMjgxNjAwMCZpZ3VpZD0wYmM3Njc3ZS1lM2IxLTYxYzItMWRmMC03MzUxZTIwMTYwNzImaW5zaWQ9NTgxNA&ptn=3&ver=2&hsh=3&fclid=0bc7677e-e3b1-61c2-1df0-7351e2016072&psq=hyperbolic+tangent+ACTIVATION+FUNCTION&u=a1aHR0cHM6Ly9tZWRpdW0uY29tL2NvZGV4L2FjdGl2YXRpb24tZnVuY3Rpb25zLWluLW5ldXJhbC1uZXR3b3JrLXN0ZXBzLWFuZC1pbXBsZW1lbnRhdGlvbi1kZjJlNGM4NThjMjE&ntb=1
https://www.bing.com/ck/a?!&&p=430637ef0b9e3b01JmltdHM9MTcyMjgxNjAwMCZpZ3VpZD0wYmM3Njc3ZS1lM2IxLTYxYzItMWRmMC03MzUxZTIwMTYwNzImaW5zaWQ9NTgxNA&ptn=3&ver=2&hsh=3&fclid=0bc7677e-e3b1-61c2-1df0-7351e2016072&psq=hyperbolic+tangent+ACTIVATION+FUNCTION&u=a1aHR0cHM6Ly9tZWRpdW0uY29tL2NvZGV4L2FjdGl2YXRpb24tZnVuY3Rpb25zLWluLW5ldXJhbC1uZXR3b3JrLXN0ZXBzLWFuZC1pbXBsZW1lbnRhdGlvbi1kZjJlNGM4NThjMjE&ntb=1

ReLU(𝑥) = max(0, 𝑥)

4. Leaky ReLU: A variant of ReLU that allows a small, non-zero

gradient when the unit is not active.

where (\alpha) is a small constant.

5. Softmax Function: Used in the output layer of neural networks

for multi-class classification problems. It converts logits into

probabilities.

The softmax function is a mathematical operation that converts a

vector of K real numbers into a probability distribution of K possible

outcomes. Here’s how it works:

A. Given an input vector z of K real numbers, the softmax function

computes the exponential of each element in z.

B. It then normalizes these exponentials by dividing each value by

the sum of all exponentials.

The result is a probability distribution consisting of K probabilities,

where each probability corresponds to one of the possible outcomes.

Mathematically, the softmax function is defined as follows:

Here:

 (z_i) represents the i-th element of the input vector z.

 The denominator sums up the exponentials of all elements in z.

The softmax function is commonly used in machine learning,

especially in neural networks, for tasks like classification. It ensures

that the output values are non-negative and sum up to 1, making them

interpretable as probabilities.

Each activation function has its own advantages and is chosen based

on the specific requirements of the neural.

https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function

How do neural networks work?

One way to understand how ANNs work is to examine how neural networks work in the
human brain. The history of ANNs comes from biological inspiration and extensive study
on how the brain works to process information.

Artificial neural network structure

An individual neuron is a cell with an input and output structure. The input structure of a
neuron is formed by dendrites, which receive signals from other nerve cells. The output
structure is an axon that branches out from the cell body, connecting to the dendrites of
another neuron via a synapse. Neurons communicate using electrochemical signals.
Neurons only fire an output signal if the input signal meets a certain threshold in a
specified amount of time.

ANNs operate similarly. They receive input signals that reach a threshold using sigmoid
functions, process the information, and then generate an output signal. Like human
neurons, ANNs receive multiple inputs, add them up, and then process the sum with a
sigmoid function. If the sum fed into the sigmoid function produces a value that works,
that value becomes the output of the ANN.

This is the structure of an individual neuron in an ANN, but networks have multiple layers
and neurons that create the network. The structure of an entire artificial neural network
consists of:

 Input layer: takes in the input data and transfers it to the second (hidden) layer of
neurons using synapses. An input layer has as many nodes as features or columns of
data in the matrix.

 Hidden layer: takes data from the input layer to categorize or detect desired aspects of

the data. Nodes in the hidden layer send the data to more hidden layers or, finally, to the
output layer. The hidden layer of an ANN is a “black box” because researchers cannot
determine its results.

 Output layer: takes data from the hidden layer and outputs the results. It has as many

nodes as the model desires.
 Synapses: connect nodes in layers and in between layers.

Deep neural networks, which are used in deep learning, have a similar structure to a
basic neural network, except they use multiple hidden layers and require significantly
more time and data to train.

Types of neural networks

Neural networks vary in type based on how they process information and how many
hidden layers they contain. Three types of neural networks include the following:
 Feed-forward neural networks

 Backpropagation neural networks
 Convolution neural networks

Let’s take a closer look at how each neural network type works.

Convolution Neural Network

A Convolutional Neural Network (CNN) is a type of Deep Learning neural network

architecture commonly used in Computer Vision. Computer vision is a field of Artificial
Intelligence that enables a computer to understand and interpret the image or visual
data.
When it comes to Machine Learning, Artificial Neural Networks perform really well.
Neural Networks are used in various datasets like images, audio, and text. Different
types of Neural Networks are used for different purposes, for example for predicting
the sequence of words we use Recurrent Neural Networks more precisely
an LSTM, similarly for image classification we use Convolution Neural networks.

Convolution Neural Network

Convolutional Neural Network (CNN) is the extended version of artificial neural
networks (ANN) which is predominantly used to extract the feature from the grid-like
matrix dataset. For example visual datasets like images or videos where data patterns
play an extensive role.
CNN architecture
Convolutional Neural Network consists of multiple layers like the input layer,
Convolutional layer, Pooling layer, and fully connected layers.

https://www.geeksforgeeks.org/implementing-ann-training-process-in-python/
https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/
https://www.geeksforgeeks.org/understanding-of-lstm-networks/
https://www.geeksforgeeks.org/artificial-neural-networks-and-its-applications/
https://www.geeksforgeeks.org/artificial-neural-networks-and-its-applications/

How Convolutional Layers works
Convolution Neural Networks or covnets are neural networks that share
their parameters. Imagine you have an image. It can be represented as a
cuboid having its length, width (dimension of the image), and height (i.e
the channel as images generally have red, green, and blue channels).

Now imagine taking a small patch of this image and running a small
neural network, called a filter or kernel on it, with say, K outputs and
representing them vertically. Now slide that neural network across the
whole image, as a result, we will get another image with different widths,
heights, and depths. Instead of just R, G, and B channels now we have
more channels but lesser width and height. This operation is
called Convolution. If the patch size is the same as that of the image it

will be a regular neural network. Because of this small patch, we have
fewer weights.

Image source: Deep Learning Udacity

Now let’s talk about a bit of mathematics that is involved in the whole
convolution process.
 Convolution layers consist of a set of learnable filters (or kernels)

having small widths and heights and the same depth as that of input
volume (3 if the input layer is image input).

 For example, if we have to run convolution on an image with
dimensions 34x34x3. The possible size of filters can be axax3, where

‘a’ can be anything like 3, 5, or 7 but smaller as compared to the
image dimension.

 During the forward pass, we slide each filter across the whole input
volume step by step where each step is called stride (which can have
a value of 2, 3, or even 4 for high-dimensional images) and compute
the dot product between the kernel weights and patch from input
volume.

 As we slide our filters we’ll get a 2-D output for each filter and we’ll
stack them together as a result, we’ll get output volume having a
depth equal to the number of filters. The network will learn all the
filters.

Layers used to build ConvNets
A complete Convolution Neural Networks architecture is also known as
covnets. A covnets is a sequence of layers, and every layer transforms
one volume to another through a differentiable function.
Types of layers: datasets
Let’s take an example by running a covnets on of image of dimension 32
x 32 x 3.
 Input Layers: It’s the layer in which we give input to our model. In

CNN, Generally, the input will be an image or a sequence of images.
This layer holds the raw input of the image with width 32, height 32,
and depth 3.

 Convolutional Layers: This is the layer, which is used to extract the
feature from the input dataset. It applies a set of learnable filters
known as the kernels to the input images. The filters/kernels are
smaller matrices usually 2×2, 3×3, or 5×5 shape. it slides over the
input image data and computes the dot product between kernel
weight and the corresponding input image patch. The output of this
layer is referred as feature maps. Suppose we use a total of 12 filters
for this layer we’ll get an output volume of dimension 32 x 32 x 12.

 Activation Layer: By adding an activation function to the output of
the preceding layer, activation layers add nonlinearity to the network.
it will apply an element-wise activation function to the output of the
convolution layer. Some common activation functions are RELU:
max(0, x), Tanh, Leaky RELU, etc. The volume remains unchanged
hence output volume will have dimensions 32 x 32 x 12.

 Pooling layer: This layer is periodically inserted in the covnets and its
main function is to reduce the size of volume which makes the
computation fast reduces memory and also prevents overfitting. Two
common types of pooling layers are max pooling and average
pooling. If we use a max pool with 2 x 2 filters and stride 2, the
resultant volume will be of dimension 16x16x12.

https://www.geeksforgeeks.org/ml-introduction-to-strided-convolutions/
https://www.geeksforgeeks.org/activation-functions-neural-networks/
https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/

Image source: cs231n.stanford.edu

 Flattening: The resulting feature maps are flattened into a one-
dimensional vector after the convolution and pooling layers so they
can be passed into a completely linked layer for categorization or
regression.

 Fully Connected Layers: It takes the input from the previous layer

and computes the final classification or regression task.

Image source: cs231n.stanford.edu

 Output Layer: The output from the fully connected layers is then fed
into a logistic function for classification tasks like sigmoid or softmax
which converts the output of each class into the probability score of
each class.

Gradient Descent

What Is Gradient Descent in Machine Learning?

Gradient Descent is an optimization algorithm for finding a local minimum
of a differentiable function. Gradient descent in machine learning is simply
used to find the values of a function's parameters (coefficients) that
minimize a cost function as far as possible.

Gradient descent is an optimization algorithm that’s used when training a
machine learning model. It’s based on a convex function and tweaks its
parameters iteratively to minimize a given function to its local minimum.

You start by defining the initial parameter’s values and from there the
gradient descent algorithm uses calculus to iteratively adjust the values so
they minimize the given cost-function.

What Is a Gradient?

A gradient simply measures the change in all weights with regard to the
change in error. You can also think of a gradient as the slope of a function.

The higher the gradient, the steeper the slope and the faster a model can
learn. But if the slope is zero, the model stops learning. In mathematical
terms, a gradient is a partial derivative with respect to its inputs.

Imagine a blindfolded man who wants to climb to the top of a hill with the
fewest steps possible. He might start climbing the hill by taking really big
steps in the steepest direction. But as he comes closer to the top, his steps
will get smaller and smaller to avoid overshooting it. Imagine the image
below illustrates our hill from a top-down view and the red arrows are the
steps of our climber. A gradient in this context is a vector that contains the
direction of the steepest step the blindfolded man can take and how long
that step should be.

https://builtin.com/data-science/tour-top-10-algorithms-machine-learning-newbies
https://builtin.com/machine-learning/machine-learning-models-explained
https://builtin.com/machine-learning/machine-learning-models-explained
https://builtin.com/data-science/vector-norms

Note that the gradient ranging from X0 to X1 is much longer than the one

reaching from X3 to X4. This is because the steepness/slope of the hill,

which determines the length of the vector, is less. This perfectly represents

the example of the hill because the hill is getting less steep the higher it’s

climbed, so a reduced gradient goes along with a reduced slope and a

reduced step size for the hill climber.

How Does Gradient Descent Work?

Instead of climbing up a hill, think of gradient descent as hiking down to the
bottom of a valley. The equation below describes what the gradient descent
algorithm does: b is the next position of our climber, while a represents his
current position. The minus sign refers to the minimization part of the
gradient descent algorithm. The gamma in the middle is a waiting factor

and the gradient term (Δf(a)) is simply the direction of the steepest
descent.

This formula basically tells us the next position we need to go, which is the
direction of the steepest descent. Let’s look at another example to really
drive the concept home.

Imagine you have a machine learning problem and want to train your
algorithm with gradient descent to minimize your cost-function J(w, b) and
reach its local minimum by tweaking its parameters (w and b). The image
below shows the horizontal axes representing the parameters (w and b),
while the cost function J(w, b) is represented on the vertical axes.

https://builtin.com/machine-learning/machine-learning-basics
https://builtin.com/machine-learning/cost-function

We want to find the values of w and b that correspond to the minimum of

the cost function (marked with the red arrow). To start, we

initialize w and b with some random numbers. Gradient descent then starts

at that point (somewhere around the top of our illustration), and it takes one

step after another in the steepest downside direction (i.e., from the top to

the bottom of the illustration) until it reaches the point where the cost

function is as small as possible.

Types of Gradient Descent:

 Batch Gradient Descent
 Stochastic Gradient Descent
 Mini-Batch Gradient Descent

https://builtin.com/data-science/regression-machine-learning
https://builtin.com/data-science/regression-machine-learning

Gradient Descent Learning Rate

How big the steps gradient descent takes in the direction of the local
minimum is determined by the learning rate, which figures out how fast or
slow we will move towards the optimal weights.

For the gradient descent algorithm to reach the local minimum, we must set
the learning rate to an appropriate value, which is neither too low nor too
high. This is important because if the steps it takes are too big, it may not
reach the local minimum because it bounces back and forth between the
convex function of gradient descent (see left image below). If we set the
learning rate to a very small value, gradient descent will eventually reach
the local minimum but that may take a while (see the right image).

The learning rate should never be too high or too low for this reason. You
can check if your learning rate is doing well by plotting it on a graph.

How to Solve Gradient Descent Challenges

To make sure the gradient descent algorithm runs properly, plot the cost
function as the optimization runs. Put the number of iterations on the x-axis
and the value of the cost function on the y-axis. This helps you see the
value of your cost function after each iteration of gradient descent, and
provides a way to easily spot how appropriate your learning rate is. Try
different values for it and plot them all together. The left image below

shows such a plot, while the image on the right illustrates the difference
between good and bad learning rates.

If the gradient descent algorithm is working properly, the cost function
should decrease after every iteration.

When gradient descent can’t decrease the cost function anymore and
remains more or less on the same level, it has converged. The number of
iterations gradient descent needs to converge can sometimes vary a lot. It
can take 50 iterations, 60,000 or maybe even 3 million, making the number
of iterations to convergence hard to estimate in advance.

There are some algorithms that can automatically tell you if gradient
descent has converged, but you must define a threshold for the
convergence beforehand, which is also pretty hard to estimate. For this
reason, simple plots are the preferred convergence test.

Another advantage of monitoring gradient descent via plots is it allows us to
easily spot if it doesn’t work properly, for example if the cost function is
increasing. Most of the time the reason for an increasing cost-function
when using gradient descent is a learning rate that’s too high.

If the plot shows the learning curve going up and down without really
reaching a lower point, try decreasing the learning rate. Also, when starting
out with gradient descent on a given problem, simply try 0.001, 0.003, 0.01,
0.03, 0.1, 0.3, 1, etc., as the learning rates and look at which one performs
the best.

	How do neural networks work?
	Artificial neural network structure

	Types of neural networks
	Convolution Neural Network
	Convolution Neural Network
	CNN architecture
	How Convolutional Layers works
	Layers used to build ConvNets

	What Is Gradient Descent in Machine Learning?
	What Is a Gradient?
	How Does Gradient Descent Work?
	Types of Gradient Descent:
	 Batch Gradient Descent
	 Stochastic Gradient Descent
	 Mini-Batch Gradient Descent

	Gradient Descent Learning Rate
	How to Solve Gradient Descent Challenges

